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Executive summary

This white paper guides users of the trace simulator (ELMO) released by the REASSURE consortium in
the particular task of security testing code during the design phase. It is intended for software developers
who need to write or integrate cryptography on ARM CORTEX-M devices, in particular the M0. We
assume familiarity with symmetric encryption (AES), an awareness of side channel analysis (in particular
power analysis and masking as a countermeasure), and ARM Thumb assembly.

We begin by explaining the different options and challenges for leakage simulation. Broadly speaking,
there are two key aspects to simulation: the accurate tracking of data flow (at some appropriate level) and
the mapping of the flow to some meaningful prediction of the power consumption (or other side-channel).
Unlike most of the other existing tools, which focus more on one or other of these ends, ELMO (as
we describe) makes a combined effort towards both, and was therefore chosen as the starting point for
development within the project.

We next show how to set up and configure ELMO – for simulation generally, and in the context of
‘fixed-versus-random’ leakage detection. We provide some non-technical intuition for choosing the
desired error rates of the tests and setting an appropriate sample size.

Finally, we give some case-study examples that show ELMO’s leakage detection capabilities in practice
and illustrate the types of problems it is able to flag up. We suggest ways to address the particular prob-
lems in question, thus demonstrating a workflow of testing, adjusting, and retesting that we recommend
to developers in the code development phase of the design process.

The appendix of this whitepaper listes and reviews a number of existing leakage simulators.
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1 Introduction

This white paper is a deliverable of the Horizon 2020 project ‘REASSURE: Robust and Efficient Approaches
to Evaluating Side Channel and Fault Attack Resilience’. It is aimed at equipping IoT software engineers with
the knowledge to utilise REASSURE tools to test and improve the security of cryptographic implementations.

Cryptography is an essential feature of many products and applications in the IoT domain, which is vast in
terms of implementation options. For those products that are on the ‘low end’, i.e. that have comparatively
small processors (the ARM Cortex-M family, for example), implementations of cryptography are particularly
vulnerable to power analysis attacks.

REASSURE developed a leakage simulator, ELMO, which enables a developer to run their code and find
potential side channel leaks, without having to invest in an expensive lab setup. ELMO can also help to fix
leaks, such that, step by step, developers can improve their code and make it leakage free.

This white paper explains how ELMO works (and some of its limitations), and then demonstrates how to use
ELMO to find leaks in a masked AES implementation. It is aimed at IoT software developers who have a
basic understanding of side channel attacks (that is, how a power analysis attack works in principle), and are
working with ARM Cortex-M processors.

1.1 Structure of this white paper

We first overview the different options for simulation and survey existing simulators, before introducing
ELMO. We describe its particular capabilities and limitations, before explaining how to compile and operate
it, and especially how to configure it for the task of leakage detection. (Detailed documentation is provided
along with the code [18]). We then present some examples of subtle leakages from imperfectly protected
implementations that can be detected from ELM0 simulations, and show how to respond to problems once
they have been identified.

2 Leakage Simulation Approaches

There are two component parts to any power (or other side channel) simulation: emulating what the device is
doing internally, and modelling the externally observable behaviour of the device in order to accurately map
the emulated processes onto predicted consumption. Simulations can be broadly categorised according to the
architectural level at which they attempt to characterise the power/energy:

Transistor level simulation. Given sufficient information about the technology that a chip will be built in,
a circuit can be mapped to a network of transistors, the power consumptions of which are modelled
via known differential equations. Most modern commercial tools derive from an open source analogue
electronic circuit simulator called SPICE (Simulation Program with Integrated Circuit Emphasis) [20].
SPICE takes a back annotated netlist of transistors as input, where back annotation refers to the process
of “augmenting” a netlist with more accurate information, such as delays of various types. This approach
accurately describes the aggregated power behaviour of the individual transistors, but is unable to take
into full account more complex differential effects, occurring (for example) due to the placement of
components on a circuit.

Gate level simulation. Gate level simulations are also based on (back annotated) netlists. For the simulation,
the number of transitions in each gate is counted and weighted, according to the information in the netlist.
The sum over all weighted transitions is then an approximation for the instantaneous power of the circuit.
If there is no information about how to “translate” a transition to the power consumption, then one can
simply count the number of transitions. This is often referred to as a “toggle count model”.
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Behavioural level simulation. On this next level up, there is no information about the placement of circuit
elements and the routing of signals between them. One only has access to the behavioural description of
the components – for example, in the form of low level machine code or micro code, instruction/assembly
code, or higher-level code (such as C). Developing accurate models on this level requires access to actual
devices (and a laboratory setup) from which the average power of different (sequences of) instructions
is estimated. They are well suited for small (and thus low complexity) devices, on which assembly
instructions map directly to machine instructions without further decoding into micro instructions.

In the context of side channel analysis researchers recognised the value of simulations early on and many
papers produce results based on simulated traces. Most fall into the ‘behavioural level’ category, but differ
from more general purpose methods of this type as these typically average over data inputs, whereas it is
precisely the data-dependent variation in power consumption that constitutes side-channel ‘leakage’.

Because there are two components to simulation, there are two opportunities to ‘get it wrong’. The tendency
of previous work has been to focus attention on either emulation or modelling and to neglect the other, to the
detriment of the overall achievement.

ELMO, in contrast, is based on an architecture-specific emulator with empirically estimated models for the
data-dependent power consumption.

An overview of other leakage simulators developed and used within industry and academia can be found in
Appendix A.

3 ELMO

ELMO has been designed with the following technical requirements in mind:

1. it must accept inputs (i.e. source code) that are suitably close to what is actually executed on the target
platform;

2. it must include some standard analysis techniques that require minimal user interaction;

3. it must be capable of relating identified leaks to the inputs (i.e. the source code);

4. it must be modular (different emulators, leakage models, trace formats, etc).

Detailed explanations about our design process, alongside precise information for all aspects that we discuss
in the following, can be found in [19].

3.1 Emulation

There are a number of device emulators available (both commercial as well as open source); the original and
current versions of ELMO are supported by Thumbulator, an open source instruction set emulator for the ARM
M0 [27]. Like other medium complexity processors, the M0 translates assembly code more or less directly
into machine instructions. Thus it is possible, given arbitrary sequences of assembly instructions as input, to
reproduce the behaviour (in particular, the data flow) of the core microprocessor with reasonable accuracy. The
Thumbulator, as an instruction level emulator, is naturally agnostic to peripherals and in particular the memory
subsystem.

Leakage from the memory subsystem is however relevant in the context of implementing cryptography with
countermeasures against side channel leakage. Therefore we added a simplified model that represents the
implementation of the bus architecture connecting the memory with the CPU as follows: we conjecture (based
on our lab experiments) that there are two 32-bit buses, one for read and one for write, and that the bus value
(or connected buffer) only changes when there is a new write/read operation happening. These buses are
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represented in our model by two 32-bit variables, representing the current state on the read and write buses
respectively. Only read/write instructions update these two variables: for any other instruction, the values on
the buses are preserved.

As we shall see in the next section, this add-on enables us to incorporate the memory subsystem into the power
model. However, we stress that it is a targeted fix based on observations particular to a single manufacturer’s
product; it should not be presumed to be generally applicable, nor to cover other possible fluctuations across
boards.

3.2 Modelling

The second component task of trace simulation is to map the instruction-level data flow generated by the
emulator to power consumption predictions. An aim of ELMO, and of REASSURE, is to improve on the
standard models resorted to by many previous simulators (for example, Hamming weight or Hamming
distance assumptions) with custom-built models that take potentially complex data-dependencies into account,
including those associated with instruction pipelining or interactions between adjacent wires in a circuit.

The models integrated into ELMO are built according to a ‘grey box’ approach – that is, they do not rely on
detailed knowledge of the implementation of the architecture (which, as is the case for Cortex-M devices, is
usually not easy to obtain) but they do take advantage of basic features that are publicly available. For example,
Figure 1, redrawn from [11], depicts the architectural components of an ARM M0 core in simplified form.
The CPU comprises an arithmetic-logic unit (ALU), a hardware multiplier, and a (barrel) shifter. Two buses
feed from the register banks into the ALU, one of which also connects to some data in/out registers, while a
third connects the ALU output back to the register banks. ELMO provides models for 23 Thumb instructions,
which were selected because they feature in implementations of symmetric cryptography, which is most likely
to feature on low end devices such as the Cortex M0.

Figure 1: Simplified ARM CPU architecture (redrawn from [11]; re-used from [19] with permission) for a
3-stage pipeline architecture.

The ELMO models were built, tested and modified in an incremental manner using the statistical techniques of
linear regression and the F -test, which we now (very) briefly review:

Linear regression is a method for learning relationships between observable processes from a data sample. A
model is written down describing one dependent variable as a function of several explanatory vari-
ables with unknown coefficients. The coefficients are then estimated from the dataset, for example by
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choosing values that minimise the sum of squares of the differences between the raw data and the model
predictions. It is important to bear in mind that the term linear refers to the fitted coefficients rather than
the nature of the explanatory variables. In particular, ELMO models have several second order terms
included.

The F-test is a ‘statistical hypothesis test’ which can be used to decide whether (subsets of) the explanatory
variables in the model equation really do influence the dependent variable on the left hand side enough
to be worth including. This gives us a tool to incrementally adapt our power consumption models whilst
keeping estimation costs to a minimum (noting that every additional explanatory variable increases the
number of observations needed for precise parameter estimation).

Model building always entails a trade between model complexity: the inclusion of as many explanatory vari-
ables as possible, in order to predict the dependent variable with sensitivity; and data efficiency: minimising
the amount of data needed to get precise parameter estimates, which increases with model complexity. The
priority for ELMO is to efficiently capture as much meaningful data dependent variation as possible, since
this is what constitutes side-channel ‘leakage’. We therefore focus on explanatory variables that relate directly
to, or that interact with, the data inputs, and look for ways to sensibly reduce redundant complexity. We
confirmed through a cluster analysis of model coefficients that the 23 Thumb instructions most essential for
cryptographic applications fall naturally into 5 categories, corresponding to the separate components of the
core as depicted in Figure 1, each of which can be represented in the models by a single instruction: ALU
operations (represented by eors), shifts (lsls), loads (ldr), stores (str) and multiply (muls). Reducing
the number of instructions to profile makes it feasible to collect traces for every possible sequence of three,
and to incorporate the impact of previous and subsequent instructions on the target instruction. Model building
thus proceeds as follows:

1. The power consumption of the device is measured as different sequences of assembly code are executed
on randomly generated input data.

2. The clock cycle corresponding to the target instruction is identified by inspection and compressed to a
univariate dependent variable (we choose the peak; another option might be to sum all the points in the
cycle).

3. Candidate explanatory variables are derived, including the input bits, the transitions between consecutive
inputs, the previous and subsequent instructions in the sequence, and various interactions between them.

4. For each of the 5 representative instructions, linear regression models are iteratively built by adding
groups of variables (guided by intuition about the architecture), each time retaining or discarding them
according to the outcome of an F -test for joint significance.

5. For the NXP board, the models are subsequently extended to incorporate the memory subsystem via the
Hamming distance between the current and previous states on each bus, as tracked in the augmented
data-flow described in Section 3.1 above.

Note that ELMO is modular with respect to the model: users may swap the model coefficients for a new set
estimated from a board of their choice, provided they correspond to a format interpretable by ELMO.

It is important to understand the limitations of the existing ELMO models:

• They are based on measurements which reflect the quality of our lab setup, and signal processing capa-
bilities.

• They account for data-dependent activity of the CPU core for the selected (symmetric cryptography
relevant) subset of Thumb instructions only.

• The current workaround for the memory subsystem is effective for the M0 implementations that we
utilise but may not translate across different manufacturers.
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• They produce idealised predictions, free from electronic or environmental noise.

• They do not aim at a direct numerical estimation of the total power consumption, rather a proportional
approximation of the data-dependent power consumption. Thus they at least preserve the presence of the
relevant effects, which can be detected via leakage detection tests.

• They cannot be analysed to obtain the magnitude of an effect, the ‘true’ correlation coefficients, nor the
sample size required for an attack. This is in part due to the previous item, but is also a consequence of
a) the difference in data complexity between (deliberately generic) detection and (more targeted) attack
strategies and b) the nature of statistical hypothesis testing, which aims to provide defensible decisions
(‘evidence of leakage’ versus ‘no evidence of leakage’) rather than directly interpretable test statistics.

4 Getting Started With ELMO

ELMO is maintained at github.com/sca-research/ELMO. The repository contains a pre-compiled
binary (for Linux), as well as the source files, documentation, examples, etc.

ELMO itself does not require any special libraries (everything is integrated) and it should compile with any
standard compiler. There even is a pre-complied binary program for ELMO in the repository, which should
work for many Linux-based systems. Because ELMO is dedicated for ARM M0 processors, it requires an
ARM binary as input and therefore we an ARM compiler. We have tested ELMO on Linux and Mac based
systems.

4.1 C Compiler

To compile ELMO, one needs the GCC compiler collection (tested version 7.3.0 on Ubuntu) and the make
command :

• Ubuntu: Install GCC and make at the same time with “sudo apt install build-essential”.

• Mac: Download and install “Command Line Tools for Xcode”, which is available on Apple’s developer
page. After installation is completed, run “gcc -v” in a terminal to check that you can see the correct
version information.

When the compiler toolchain is ready, enter the ELMO project directory and simply type “make” at the
command line. Once the process has completed, a binary program with the name “elmo” should appear in your
directory.

4.1.1 ARM Toolchain

In order for a user to compile his/her own code, a compiler that can output ARM code is required (we have only
tested the GNU ARM Embedded Toolchain). The main tested version is arm-none-eabi-gcc v7.3.1 20180622,
although we have found that a few other versions work for ELMO as well. The GNU ARM Embedded
Toolchain can be downloaded from [4]. Follow ARM’s installation guide:

• Ubuntu: Unpack the tarball to the install directory: $ cd $install_dir && tar xjf gcc-arm-none-eabi–
yyyymmdd-linux.tar.bz; then invoke ARM toolchain as $ export PATH=$PATH:$install_dir/gcc-arm-
none-eabi-/bin; $ arm-none-eabi-gcc (an older version is available through apt-get).

• Mac: Unpack the tarball to the install directory: $ cd $install_dir && tar xjf gcc-arm-none-eabi–
yyyymmdd-mac.tar.bz2; then invoke ARM toolchain as $ export PATH=$PATH:$install_dir/gcc-arm-
none-eabi-/bin; $ arm-none-eabi-gcc

©REASSURE consortium 2020 Page 10
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4.2 Setting up ELMO

As a stand-alone tool written in C, ELMO should be able to run on various platforms, as long as all de-
pendent libraries are correctly included. ELMO’s behaviour can be altered based on a number of macros in
“elmodefines.h”. Details of all available macros can be found in “ELMODocumentation.pdf ” on our Github
repository [18]. Of course, this step is completely optional: if the users’ goal is merely to generate traces
without tuning the configuration, the default settings are a safe fall-back.

4.2.1 ELMO Macros

We briefly explain the two most relevant macros:

#define FIXEDVSRANDOM

ELMO will perform a fixed vs. random test at the end of trace generation. The first half of the generated
traces will always be treated as the fixed input group, whereas the second half is taken to be the random group.
Unless this macro is set, ELMO will not do the test (this is the default setting).

#define CYCLEACCURATE 1

ELMO will generate traces that are cycle-accurate (i.e. multiple copies of the predicted power consumption
per target instruction in the case of multi-cycle instructions); otherwise, the generated traces always contain
one sample for each instruction.

4.3 Compiling Your Own Design with ELMO

As ELMO takes binary code as its input, before any simulation, users must (cross-)compile their own source
code to an ARM binary program.

As ELMO is a "substitute" measurement setup, it has to be instructed "what" to measure. For this purpose,
there are a few library functions that need to be included into the code that is analysed, which tell ELMO when
to start and when to stop "measuring power".

4.3.1 Code Framework

Figure 2 demonstrates how this is done in the MbedAES [5] implementation. Readers can find this project in
ELMO’s repository "Examples/DPATraces/MBedAES" [18]. Lines 9/11 mark the beginning/end of the simula-
tion trace with the ELMO library function starttrigger() and endtrigger(). The header file for these functions
must be included as

#include "${PATH_TO_HEADER}/elmoasmfunctionsdef.h"

For most users, it would be sufficient to modify line 10 to call their own code.

4.4 Makefiles

We recommend taking one of the example projects on ELMO’s Github repository [18] as a starting point and
revising as appropriate. In the case that the code hierarchy is more complicated, users may need to write their
own Makefile. This should follow exactly the same rules as the supplied Makefiles, bearing some points in
mind:

• Compiler. This needs to be ARM-GCC rather than general GCC.
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Figure 2: Code framework for trace generation: change only the target encryption part (line 10).

• ELMO library related. The so-called ELMO library functions have their header in elmoasmfunctions.h
and binary code in elmoasmfunctions.o. The make system must be able to find those files.

• Device description file. A *.ld file describes the target device. This is part of the standard ARM devel-
opment flow: it could exist in the project directory or wherever as stated in the Makefile. In most cases,
it does not affect ELMO, although one has to make sure that the RAM/ROM is large enough to host the
target encryption. Simply copying this file from the ELMO example project and renaming it would work
in most cases.

• A startup file. An assembler startup file for the target device: this is also part of the standard development
flow. As ELMO is simply a simulator, our “vector.o” in the example is good enough. This file could be
in the project directory or wherever as stated in the Makefile. Copying this file to your own project is
sufficient in most cases.

4.5 Finally: Generating Traces With ELMO

Having generated the binary code, the subsequent simulation is rather trivial: if the number of traces is defined
within the ARM source code, the command

./elmo ${PATH_TO_BINARY}/${BINARY}.bin

will start the trace generation as follows:

GENERATING TRACES...
TRACE NO: 0000000001
TRACE NO: 0000000002
TRACE NO: 0000000003
...
SUMMARY:
cycle accurate model
instructions/cylces 2274

Alternatively, one can also set the total number of traces in the command line arguments. In order to do so, in
the ARM source code, the number of traces N must be loaded from the ELMO library function:

LoadN(&N)

Then ELMO can be called as follows:

./elmo ${PATH_TO_BINARY}/${BINARY}.bin -NTrace ${NUM_OF_TRACES}

By the end of each simulation, all traces will be printed to separate files in output/traces/, while the directory
output/asmoutput contains the disassembly code for at least one of the traces. If a leakage detection procedure
is selected, the t-statistic trace is saved to output/fixedvsrandomtstatistics.txt.
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5 Configuring Leakage Detection

Whilst ELMO could be used to only generate power traces (which can be analysed using other tools), we
supply a built-in a generic leakage detection facility that enables developers to simply identify leaks in their
code.

Generic leakage detection differs from a leakage attack in that it will show many leaks (i.e. any instruction
that operates on data which leaks information about secret key material), whereas a specific leakage attack will
only show leaks that correspond to that particular attack vector. Generic leakage detection thus potentially
provides better code coverage (in comparison to specific leakage attacks), but it requires more leakage traces
(in comparison to leakage attacks).

ELMO’s leakage detection facility is based on statistical hypothesis testing of the type taken up in the
side-channel community for the purposes of (real) device evaluation. Unlike evaluations performed on real
trace measurements, where locating the source of the leakage within the algorithm relies on guesswork and
trial-and-error, simulation-based evaluations have the advantage that measurement points (and thus detected
vulnerabilities) are more identifiably tied to their instructions of origin.

The in-built procedure derives from the so-called ‘fixed-versus-random’ test introduced by Cryptography, Inc.
as part of their widely-used Test Vector Leakage Assessment (TVLA) framework [14]. The intuition behind
the tests is that, for a physically secure implementation, traces generated (in our case, simulated) by repeated
operation on fixed data inputs should ‘look like’ traces generated (simulated) during the same operations on
random inputs. Therefore, if a statistical test (TVLA uses Welch’s t-test) concludes that there is a difference
between the two sets of traces at one or more point in time, the implementation should be considered vulnerable.

5.1 A Cautionary Note

Research carried out within REASSURE uncovered limitations of the TVLA framework and (more specifically)
of a public ISO standard adapted from it (ISO/IEC 17825:2016 [15]). Subsequent work published by Whitnall
et al. at Asiacrypt 2019 [28] addresses the question of how best to configure tests in order to reliably achieve
the related but distinct goals of certifying vulnerability (demonstrating convincingly the presence of a leak) and
certifying security (demonstrating convincingly the absence of a leak). In both cases responsible reporting is
also called for. The following recommendations on how to configure ELMO for leakage detection are consistent
with the findings of these works for the general case where the user has no a priori knowledge about the
expected form and density of the leakage, though a user who is willing and able to make some such assumptions
may be interested in improving upon the configuration as guided by [28].

5.2 Configuring Sound Leakage Detection

The reason test configuration matters is that it impacts on the reliability of the conclusions. The aim of ELMO’s
fixed-versus-random procedure is to detect arbitrary leaks: we therefore want to keep the rate of false negatives
low. But we also want to be confident that the leaks we do find are really there, that is, we want to avoid false
positives too. The relevant parameters can be understood as follows:

• α controls the per-test false positive rate – the probability of concluding that there is a leak when there
isn’t. We fix this within ELMO (with the general case in mind) to the level implied by the TVLA
specification, which is α = 0.00001. (Choosing it to be very small ensures that the overall false positive
rate is still reasonable; more sophisticated methods of controlling the overall rate exist but are scenario
dependent [28]).

• d is called the standardised effect size and describes the types of vulnerability we want the test to be able
to detect. ELMO fixes this to d = 0.2 which is ‘small’ according to a widely-recognised categorisation
by Cohen [6] and is consistent with the standardised size of many of the effects that we observed for real
M0 devices. However, we also found effects as small as d ≈ 0.04 and recognise that these may pose a
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risk in the presence of particularly well-resourced adversaries. Evaluators concerned with such a threat
may select a smaller value for d by editing the final row of the coeffs.txt file provided as input to ELMO.

• The desired per-test false negative rate, β, is for the user to decide. Two options might be β = α,
to represent the case where both types of errors are equally concerning, or β = 0.05, to represent the
case where false positives are more of a concern than false negatives. (As the value of d decreases such a
trade-off may become necessary). β is not an input into ELMO but rather is used to determine the sample
size, as follows. . .

• The sample size N is set by the user and given as input to ELMO (the acquisition step must be set-up
to collect N/2 traces according to the fixed and N/2 according to the random data inputs). N can be
chosen by a known formula1 in such a way as to achieve the desired β for the fixed values of α and d.
For d = 0.2 and α = 0.00001 as above, a sample size of 8,000 (4,000 fixed and 4,000 random) will
achieve balanced error rates so that β is no more than α, while a sample size of half that will keep β
below 0.05. Guidance for some alternative choices of d can be found in Table 1. Note that the maximum
sample size ELMO can handle depends on the length of the code sequence and the memory resources of
a user’s PC; we have performed successful experiments with sample sizes of 100k but users interested
in very small effect sizes may sometimes need to settle for a higher rate of false negatives than positives
(see for example the bottom row of the table).

Standardised effect size β = α = 0.00001 β = 0.05 β = 0.2

d = 0.2 (Cohen’s ‘small’) 8,000 4,000 3,000
d = 0.1 31,000 15,000 12,000
d = 0.04 (Smallest observed) 189,000 92,000 70,000

Table 1: Suitable sample sizes (rounded up to the nearest 1,000) to achieve desired false negative rates for a
given standardised effect size and a TVLA-inspired false positive rate of 0.00001.

ELMO does not enforce an appropriate choice of N , but it does compute the actual associated β and report
it as part of the test outcome. The user should pay attention to this information, at the very least including it in
the summary of their findings and (if it is lower than desired) ideally repeating the test procedure with a more
adequate sample size.

6 Getting Hands On

We now illustrate how to find and fix some leaks in software implementations of the Advanced Encryption
Standard (AES), which is a likely use case. We start with a simple first-order masking scheme implemented in
C, which may be the “default” starting point for many developers. In principle, such a scheme should already
(provably) prevent the most straightforward form of power analysis (Differential Power Analysis, DPA), but as
we will demonstrate, this is rarely true in practice.

6.1 Byte-wise First Order Masked AES

Let us analyse a first order byte-wise masking scheme applied to AES. A very simple version of such a scheme
is provided via an open source implementation suitable for our target platform by the Secure Embedded Systems
Research group at Virginia Tech [29]: the whole scheme is written in C, which forms a fairly comprehensible
starting point. The ELMO-adapted version can be found on the ELMO Github repository ("Examples/Whitepa-
per_examples/Bytewise_MaskedAES_C/Original") [18].

1Precisely, N = 4 · (zα/2+zβ)
2

d2
, where zγ is the critical value of the standard normal distribution at significance level γ (that is, the

probability of an observation greater than zγ is γ). See the Asiacrypt 2019 paper resulting from this project for derivation and further
details [28].
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6.1.1 Code hierarchy

To set up the code to perform a leakage detection experiment for this implementation, we need to ensure that
the correct ELMO function calls are in the right place. The code hierarchy of the analysed implementation
is rather simple: the whole scheme is written in one .c file (byte_mask_aes.c) with just a single header file
(byte_mask_aes.h) stating the function definitions. The main encryption function is defined as

void aes128(uint8_t* state)

where state contains the AES-128 input plaintext. The key expansion should be called beforehand, as

void KeyExpansion(uint8_t* Key)

The random masks (which are required for the masking scheme) are defined as a 10-byte global array:

uint8_t Mask[10];

In the following, we denote these masks asm0 tom9. The first six masks (m0, ...,m5) are generated at random,
and the other four masks are derived fromm0, ...m3 via the MixColumns transformation: (m6,m7,m8,m9) =
MixColumn(m0,m1,m2,m3) . To read up on details about first order masking, we recommend to consult
the “DPA book” [17].

Compiling target code As per the discussion in Section 4.2, in order to conduct leakage detection in
ELMO, users must first compile this scheme to binary code and insert the ELMO trigger functions. The code
framework for this is in Figure 3. Note that ELMO does NOT initialise a fully-automated leakage detection;
rather, it simply performs a t-test on the first and second half of the simulated traces. This means users must
instruct ELMO, in their own code, to generate suitable fixed/random traces; this is illustrated in line 4–16.

Figure 3: Detection framework for the target masked encryption.

To implement masking some random numbers are required, which are stored in the byte array Mask. Pro-
ducing them via native C functions would cause ELMO to emulate also the randomness generation, which is
unnecessary. Consequently, ELMO provides a workaround in the form of a library function randbyte(), which
generates a random byte and writes it to the targeted address, so that the random generator does not have to be
emulated.
Readers might notice that the starttrigger() and endtrigger() calls are not in this part of the code: in order to
better locate the leakage, we have moved the start/end point of the trace to the start/end of the first encryption
round. Figure 4 shows the detailed implementation of void aes128(uint8_t* state). Because we are only testing
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the first round, line 15 marks the end of trace that ELMO will record. Despite this, the emulation will keep
executing for full 10 rounds. If this is not desirable, then simply the round counter would need to be changed
to limit the AES implementation to a single round during testing.

Figure 4: The original implementation from Virginia Tech (with ELMO adaption)

As line 3 and 15 in Figure 4 called the ELMO library functions, the header file for those functions must be
included as follows:

#include "elmoasmfunctionsdef.h"

Since the code hierarchy is rather simple, we can use the existing Makefile in ELMO’s repository [18] (i.e.
we simply use make in the respective project folder) to generate a byte_mask_aes.bin file. Remember that to
perform leakage detection, the macro FIXEDVSRANDOM needs to be defined (ensure it is correctly set in
elmodefines.h and if necessary re-make ELMO).

Running ELMO. When successfully compiled, a binary file byte_mask_aes.bin should exist in the targeted
directory. Users can now run the following

./elmo ${PATH_TO_BINARY}/byte_mask_aes.bin

on the command line to start the leakage simulation and associated detection.

6.2 Leakage Analysis

Figure 5 shows ELMO’s output. In a cycle accurate model, the first round of encryption takes 1020 cycles to
proceed. With 10k traces, if the false positive rate is set to 10−5 (close to TVLA’s ±4.5), the leakage detection
achieves full statistical power to detect a “small” difference (standardised effect size d = 0.2). According to the
performed leakage detection, 50 of 1020 cycles (corresponding to a single round of AES) produce significant
leakage: this means that leakage with an effect size of 0.2 is identified with near certainty. Such leakage would
definitely enable DPA style attacks and is therefore of practical concern.
Figure 6 plots the trace resulting from the leakage detection. Because the simulation was cycle accurate, it is
possible to attribute portions of the trace to the respective C code. The trace visualises where leakage occurs:
any large peak (a peak that is outside ±4.5) indicates data dependency. Therefore there appears to be a problem
towards the beginning of the SubBytes (S-box) lookups, there appears to be some severe issues with ShiftRows
(SR), and there are some issues in the remasking step.

6.2.1 ShiftRows

We shall consider ShiftRows first. This step is a likely cause for problems on the M0 architecture and it has
been the demonstrator for ELMO’s usefulness already in [19]. The root of the problem is that the ShiftRows
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Figure 5: Detection outputs for the tested masked AES.
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Figure 6: ELMO Leakage Detection, First Round of Masked AES in C

implementation will likely be translated into assembly instructions involving ROR (rotate right). This instruction
leaks the Hamming distance to its predecessor, which will be masked with the same value. Therefore, this is
likely to “strip off” the mask and expose the actual value. A simple injection of instructions with random
values can solve this problem, but this is not necessarily straigthforward when working in C. Another option
would be to utilise more masks to begin with, such that masks cannot be stripped off by instructions that exhibit
Hamming distance leakage.

6.2.2 remask function

Let us now focus on the remasking step in line 10 of Figure 4. To understand the purpose of this function we
briefly review the use of masks to secure the implementation of AES. At the beginning of the encryption, the
masking scheme applies a random value (which we call the mask) to each byte of the AES state. Then the
implementation has to manage, and in particular maintain, this masked state. This requires to switch masks
over from time to time as follows:

• Sbox: m4 and m5 protect the Sbox input and output respectively. The masked Sbox transfers each byte
from x⊕m4 to S(x)⊕m5.

• ShiftRow: Each byte has the same mask m5, ShiftRow does not change the masks.

• MixColumn: As pointed out in the DPA book [17], protecting MixColumn with a single byte-wise mask
is risky. The most common solution is using four masks for MixColumn (m0,m1,m2,m3).

Consequently, to get from the single mask m5 that protects the state in ShiftRows to the four masks that are
needed to protect MixColumns, one needs to remask the state. This is done in the remask(), see Figure 7
for a simple graphical representation and Figure 8 for the corresponding program code. In the program code
we can see that several input masks have to be specified. In the context of remasking the state in order to have
the correct input for MixColumns, the first four input masks would be m5 and the second four input masks
would be (m0,m1,m2,m3). The remask function then runs through state column by column and changes the
mask by an exclusive-or between the old mask (m5) and the respective new mask (one of (m0,m1,m2,m3)).
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m5 m5 m5 m5
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remask()

Figure 7: Remasking step

Figure 8: Code of the remask function

Because we are working with C code rather than on assembly level, it is now difficult to exactly pinpoint the
source of the detected leakage. By mapping the leakage from its precise cycle to the assembly code (which the
compiler does produce as well) one can guess that perhaps the moving of the masked state byte followed by
loading the same mask may lead to this leakage.

Remasking Pitfalls Before we dig further into the identified issue, we want to draw some attention to the
potential pitfalls that there are when working with masks. Some of them are due to a misunderstanding of how
remasking works, and others can be due to compiler optimisations.

We begin with a fundamental observation for remasking: it constitutes changing a mask from one random
value to another. This implies that remasking must be implemented in such a way that at no time the state byte
itself is present in the processor in an unmasked form. Therefore it is vital that the “new mask” is added to the
state byte before the old mask is removed; see Figure 9 for an example of how to get it wrong, and Figure 10
for the corresponding leakage detection result.

Whilst it is possible that such an unmasking happens because of developer error, it is also possible that ag-
gressive optimisation options in the compiler can re-order instructions on assembly level. This is particularly
dangerous in the context of masking.

6.3 Leakage Analysis: Assembly Level and Tackling Memory Related Leaks

We argued before that the leakage during ShiftRows is likely due to the use of the ROR instruction. When
working with code written in C, we give significant control to the compiler as we allow the compiler to produce
the code that actually runs on the microprocessor. Until there are compilers which are side channel aware,
serious crypto implementations are better written in Assembly directly.

Therefore, we now continue with our analysis using an ARM assembly implementation of the code that we
analysed before; implementation details can be found at [13].

Our simulation up until now used models which were specifically derived to describe the power leakage of the
CPU core. However in the case of many implementations, memory transfers are frequently necessary, and the
processor core therefor transfers potentially sensitive data over the memory bus.

Based on ARM’s AHB/APB protocol [3, 2], ELMO has an extension that provides a very simple model for the
leakage of this protocol. It assumes the memory system has two 32-bit separate buses: one for read and one for
write. The bus value (or connected buffer) only changes when there is a new read/write operation happening.
The bit-flip on the bus produces exploitable leakage, which will be reflected by the power consumption in that
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Figure 9: How not to remask: line 10-13
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Figure 10: ELMO leakage detection results for Fig. 9
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Figure 11: ELMO with the memory extension: first round of ASM-based AES, 10k traces.

specific cycle. Two 32-bit variables have been added to the ELMO data flow, which represent the current state
on the read/write buses. Only read/write instructions update those two variables: for any other instruction, the
values on the buses are preserved. In each cycle, an additional term is added to the power consumption sample:
the Hamming distance between the current and previous states on the read/write bus.

Although this modelling is not necessarily representative for all implementations of the AHB/APB protocol,
it represents a minimal base line modelling and we recommend to turn on the memory extension adding the
respective definition (#define MEMORY_EXTENSION) in elmodefine.h and recompiling ELMO.

With the memory extension, ELMO now detects many more leakage samples than before, see the left hand
side of Figure 11. As we can see, almost all AES components still show exploitable leakage if the memory
system leaks this way. Because we know that all these leakages originate from the memory bus, producing a
security patch is quite straightforward.

We look at ShiftRows as an example. As we know that the leakage comes from consecutive load and store
instructions (the memory transfers), any instruction with an independent (random or constant) value that is
placed between loads/stores will clear that memory bus and therefore remove the leakage. The code fragment
below illustrates this principle:

ldr r4, [ r0, #4 ] //Load a row=x
eors r1, r1 //Remove HD: r1=0
str r1, [ r0, #4 ] //Clear write bus
ldr r1, [ r0, #4 ] //Clear read bus
rors r4, r5 //Rotate 8 bits=ROT8(x)
eors r1, r1 //Remove HD: r1=0
str r4, [ r0, #4 ] //Store the result

In this code fragment, the ldr/str instructions are loading/storing 32-bit word with exactly the same mask
(m5,m5,m5,m5). Thus, any Hamming distance between them would be a leakage. The extra eors r1,
r1 above clears the ALU buses, but not the memory system. Meanwhile, if we execute a (redundant) ldr/str
in-between (the str r1, [ r0,#4 ] and ldr r1, [ r0, #4 ] ), it will clear the read/write bus to
zero before next read or write. The improvement in Figure 11 is quite significant: on the right hand, although
other parts are still leaking, the ShiftRow part is now fine in the simulation.

6.4 Towards a First Order Secure Scheme

Given the difficulty of modelling and dealing with leaks that are due to the memory subsystem, it should be
obvious that using the very minimum of masks in a scheme is potentially very dangerous. Hence it is sensible
to abandon the attempt to rely on the simple security “patches” that we described, and instead look at low-cost
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revisions to strengthen the masking scheme itself.

The core idea is to take full advantage of the 4 byte masks required for MixColumns and utilise them throughout
the entire encryption round. The resulting scheme’s description as well as implementation is available on the
ELMO Github repository [13]. As both load/store and shift instructions are now protected by different masks,
the first order leakage disappears from the ELMO simulations, see left hand of Figure 12. To verify that this
implementation does not show leaks when executed on a real device, we ran experiments on an M0 device.
The leakage detection results are shown on the right hand of Figure 12. These results are based on one million
traces, and α = 0.00001. With these parameters we known that it is possible to detect even the smallest
observed effect sizes of d = 0.04 with power.

Whilst this is reassuring, it still could be that smaller leaks could be present. In addition that at best, this only
means that the implementation achieves what the masking scheme claims — “first-order security”. This is in
fact a rather low guarantee because second order DPA attacks are definitely practical [21].
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Figure 12: ELMO & Realistic tests on the final scheme
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A Existing Leakage Simulators

The appeal of leakage simulation was evident already during the early days of side channel research: when
proposing a novel analysis method it is necessary to demonstrate its efficiency across many different use cases.
Instrumenting many different devices (and for a range of different signal-to-noise ratios) is cumbersome and
time consuming, and thus researchers were motivated to look at alternatives such as running simulations on
different (artificially generated leakage models) and by adding different amounts of Gaussian noise.

Another area of interest for simulations was the evaluation of hardware implementations. In the context of
hardware it is even more crucial to make statements early on in the design, because of the cost implications
of having to tape out multiple test devices for evaluations. Consequently, the development and use of tools
to estimate instantaneous power at the transistor and gate level was of considerable interest; a previous EU
funded project called SCARD devoted some time to this task [1].

We now run through a list of simulators that we were able to find information for and review their alignment
with the aims of the REASSURE project.

A.1 Industrial Tools

PinPas. PinPas (Program Inferred Power Analysis Simulator) [9] was one of the earliest simulation tools de-
signed with side-channel analysis in mind. It was written in Java and aimed to simulate simple leakage
from small 8-bit microcontrollers. The leakage model itself was chosen a priori (specifically, it was the
Hamming weight) rather than being derived from any concrete device. It was not open source and is no
longer available.

Tools from the SCARD project. A number of hardware simulation approaches were investigated and imple-
mented as part of the EU-funded project SCARD, including two prototype gate-level power estimators:
one a stand-alone tool based on value change dumps (VCDd), the other embedded into Mentor’s Model-
Sim via the PLI interface [1]. They also developed a methodology to model the effect of the IC package
and bonding wires on the power consumption. A follow up paper [16] drew positive conclusions about
the toggle-count models based on visual comparisons of the (simulated versus real) traces and DPA re-
sults, but the coverage and statistical rigour of the assessment was limited.

Riscure Inspector. Riscure’s Inspector toolbox [23] contains some functionality for high level power simula-
tion: given a high level piece of code, and a power model, a tool will produce traces based on applying
the given leakage function to intermediates that are specified in the high level code. It does not take
information about an actual target architecture into account.

RiscaSim. RiscaSim is a hybrid side channel analysis simulator, running on a Riscurino board de-
signed by Riscure that enables the simulation of side channel analysis traces without ded-
icated measurement equipment. RiscaSim is sending “artificial” traces over the serial port
UART to the computer. RiscaSim allows a user to select from a number of leakage mod-
els, including returning the “raw” register content to facilitate the analysis of “Whitebox”
implementations. It is envisioned to extend its’ functionality to include fault attacks. The
documentation to RiscaSim was developed with REASSURE input and is available here
https://rise.articulate.com/share/rj1yOz06EtTY4dsACPM7D14t5QgpiLzS#
/lessons/eZWsV9izVZnmvCBeOt2R-pEpzP6iQz1H.

esDynamic. esDynamic is a set of tools to enable the analysis of cryptographic implementations [10]. Included
is the ability to emulate binary code on a number of platforms and to perform some standard side channel
analysis on these emulations. There does not seem to be any actual characterisation of the emulated
platforms included.

Virtualyzr. The Virtualyzr tool from Secure-IC is a HDL simulator [24]. There is no detailed public infor-
mation available for it, but from the website one can gather that it can be used with various types of
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descriptions that are available within a typical hardware design flow.

A.2 Academic Tools

Thuillet et al. [25] report on a simulator that is similar to PinPas and is designed for the analysis of smart
cards. It takes in a program in a high level language and works using a standard power model.

Debande et al. [8] emphasise the importance of (and the complexities involved in) deriving realistic leakage
models empirically. They fit linear models in function of the state bits and state transitions using the
techniques of linear regression.

Gagnerot [12] reports on writing a simulator for side channel and fault attacks as part of his PhD thesis. The
simulator was designed for a 16-bit RISC architecture under an NDA. It was based on using standard
power models (HW and HD).

Reparaz [22] suggests to essentially use a power simulation with some leakage detection testing to spot prob-
lems in masked implementations as an alternative to more costly verification tools.

Bristol University Applied Security unit has been using an 8051 emulator together with a standard power
model (HW) for some years. Every student receives a compiled binary that includes a ‘secret key’ and
can then interact with the leakage simulator to generate side channel traces to perform attacks.

ELMO [19] is a simulator that takes in the Thumb assembly of an algorithm and maps the data flow via power
models that have been provided especially and are intended to be specific to a processor architecture. The
featured approach is based on model building rather than simply fitting (i.e. rather than estimating the
parameters for one fixed model, a variety of candidate configurations are explored and decisions about
the functional form made based on the statistical significance or otherwise of tested alternatives). The
underlying M0 emulator is open source [27], and thus the tool is also available as open source [18].

Veshchikov’s PhD thesis [26] proposes a number of tools: Silk, Ascold and Savrasca, each working on a
different level of abstraction. Savrasca can take in custom models and is capable of dealing with an AVR
architecture because it is essentially based on SimulAVR.

MAPS [7] is the most recent tool. It also focuses on an M class processor from ARM. Since the development
of ELMO, ARM has enabled researchers to get access to a (semi) obfuscated RTL description of the M0
and M3 processor. MAPS uses this information to model the pipeline of an M3, which is an important
source of HD leakage. The emulator is written from scratch in a mix of C and C++ and uses standard
power models (HW, HD).
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